How Do We Keep Track of Greenhouse Gas Emissions?

You guessed it: This week’s climate story leads us all the way to outer space. But let me back up…

Under the Paris Agreement most countries announced to cut down greenhouse gas emissions. Norway, for example, wants to reduce emissions by 55% below 1990 levels by 2030. Each country set their own specific target. But is each country on track? How do we know how much greenhouse gas emissions a country is emitting?

To calculate yearly emissions each country completes a complex inventory. It follows a bottom up approach of counting emissions for different sectors such as transportation, farming, industrial sites etc. for each region. The regions and sectors are then added up to understand national emissions. Unfortunately, there are many uncertainties and unknowns with this bottom up approach.

In recent years satellites have been developed to measure emissions from space. This top down approach has also many uncertainties. For example, one big challenge is to separate human made emissions from natural occurring emissions. So how do we best calculate a county’s yearly emissions? Both bottom up and top down approaches have pros and cons, and it looks like a combination is the way to get to the most accurate numbers.

OK, so let’s get back to outer space. Imagine a group of satellites circling the earth and measuring accurate real time emissions. This is what the European Space Agency is planning to do with its new Sentinel satellites. They are planning to launch the satellites in 2025 to map global carbon dioxide emissions. This is how it works:

Different spectrometers measure atmospheric carbon dioxide. The data is then processed to better understand emissions caused by human activities. The goal is to understand small scale regional emissions as well as overall emissions of big cities. This is how ESA puts it:

  • Detect emitting hot spots, such as megacities & power plants
  • Monitor hot spot emissions to assess emission changes
  • Assess emission changes against local reduction targets
  • Assess the national emissions and changes in 5-year time steps

Decarbonizing our economies is an enormous undertaking. To get there in time we need to get all the help we can get. Let’s hope the Sentinel sensors can help us reach and exceed our emission targets and motivate us to substantially reduce emissions.

More Than Just a Snack – How Seaweed Tackles Climate Change

Imagine you are swimming in the ocean and something soft touches your leg. Startled you take a look and realize it was just some seaweed… You guessed it, this week’s climate story is about seaweed.

Did you know last Thursday was Seaweed Day? Lloyd’s Register Foundation and the United Nations Global Compact launched a seaweed manifesto. During the launch, short, inspiring talks from companies, non-profits, research institutions and UN agencies highlighted how important seaweed is.

Besides being a sustainable option for food and feed, packaging and even biofuels, seaweed could also play an important role in capturing greenhouse gases. One of the speakers at Seaweed Day was Jorunn Skjermo, a scientist at SINTEF Ocean in Norway. During her talk she covered three ways in which seaweed is beneficial to the climate.

The first way is replacing fossil-based products like fuel or plastics with seaweed-based fuels and plastic. By replacing fossil-based products with sustainable alternatives, a lot of greenhouse gas emissions can be avoided.

Her second point is about food. We need protein in our diet and meat production has a big carbon footprint. Vegetarian options such a soy protein have a much lower carbon footprint. Seaweed has by far the lowest carbon footprint. It grows in the ocean without the need of deforestation, watering, or fertilizing. Besides being an extremely sustainable food option, this superfood is packed with protein, vitamins, minerals, and antioxidants.

The third way seaweed is beneficial to the climate is by removing greenhouse gases from the atmosphere. This is how it works:

On the left side you see how carbon dioxide gets absorbed by the ocean surface. In the water, seaweed transforms carbon dioxide into oxygen, just like land plants. On top of that, seaweed stores carbon dioxide in its biomass. Pictured on the right side is what happens when seaweed dies off. It sinks to the bottom of the ocean, where it stays for hundreds of years, storing the carbon dioxide.

During her talk Jorunn showed a map of Norway with a small rectangle off the coast. The size of that rectangle was a 20.000 square kilometer area. A seaweed farm that size could offset Norway’s yearly greenhouse gas emissions.

A restored ocean and seaweed farming forests should be considered carbon sinks to mitigate climate change

http://www.seaweedmanifesto.com/

How would that work in practice? I envision offshore seaweed farms that produce seaweed for food, feed, packaging or other uses. Seaweed forests clean the ocean and make the water less acidic. If a percentage of the seaweed is cut so it can sink, big amounts of carbon dioxide could be stored.

Seaweed day was packed with insightful talks, from selling seaweed snacks in Japan to blue bonds in Portugal. What I liked most about the seaweed manifesto is how teams from all over the world worked together. It lists milestones and success criteria for a successful seaweed industry. Let’s hope we can accelerate pilot projects and build more seaweed farms soon so we can restore ocean health and mitigate climate change.

How Drones Help Tackle Climate Change

A while ago I wrote about an amazing project that uses drones to re-grow mangrove trees in Myanmar. The world urgently needs a range of solutions to offset carbon emissions, and trees play a major role. How do trees tackle climate change? Trees capture carbon dioxide from the air and store it in biomass, roots and soil. According to the Trillion Tree Campaign, global reforestation binds at least a quarter of the annual man-made carbon dioxide emissions.

I love the mangrove project in Myanmar! At the same time I have been reading about our yearly tree losses in North America and Europe. That made me wonder: What are we doing to replant trees closer to home? That’s where the Canadian startup Flash Forest comes into play.

Imagine you are walking through a big, green, majestic forest, breathing in the cool, fresh air. Can you hear the sounds of birds and other forest animals? This week’s climate story brings us to a forest in Canada. Actually, for now, it’s land that recently burnt down in a wildfire. With Flash Forest’s help, hopefully, it will be a forest soon. Flash Forest is a reforestation company that uses drones to reforest areas. This is how it works:

First, the land is mapped to identify where and how to grow a mix of native trees. Then drones drop seed pods in the soil. After planting, the drones monitor the progress and replant spots if necessary.

The seed pods are also designed to store moisture, so the seedlings can survive even with months of drought

https://www.fastcompany.com/90504789/these-drones-can-plant-40000-trees-in-a-month-by-2028-theyll-have-planted-1-billion

What I like most about Flash Forest is their focus on offsetting carbon emissions. Their motto is if we automate deforestation, we should automate re-forestation as well.

All over the world, small startups such as Flash Forest are addressing different solutions to tackle climate change. I hope that adding up all these small projects will make a big difference!

What Do Online Dating And Electric Cars Have in Common?

I’m trying to find my way through downtown when a policeman jumps in front of my car holding up a stop sign. I stop, slightly shocked. What’s happening? A film crew passes by in a car, filming another car doing a U-turn. You guessed it, this week’s climate story brings us to Hollywood and Los Angeles.

A few weeks ago I attended the Veloz forum in Los Angeles. Veloz is a nonprofit organization for electric cars. The conference had an engaging mix of speakers from electric car companies, electric charging companies and utilities.

What’s all that buzz about electric cars? Transportation accounts for 14% of greenhouse gas emissions. By switching to electric cars, we cut greenhouse gas emission in half and when the cars are charged with renewable power we reduce emissions even more. For more details read my post on how electric cars tackle climate change.

Why are only 2.1% of Americans driving electric cars? Why are there still so few electric car models out there? Why are electric cars still not mainstream? During the conference I learned that some of the concerns car buyers have with electric vehicles are range, charge time, and cost.

Matt Nelson from Electrify America gave an overview of their “Normal Now” campaign, a digital campaign to raise awareness for electric cars.

The campaign aims to introduce zero-emission vehicles for the vast majority of Americans who have never considered switching to a zero-emission vehicle.

https://media.electrifyamerica.com/en-us/releases/73

The campaign is a set of commercials, comparing electric cars to technologies that seemed strange at first, too, like email or online dating.

So, what does online dating have to do with electric cars? They are both normal now. What I like most about the campaign is that’s its effective and funny at the same time. Let’s hope campaigns like this help more buyers to switch to electric cars. (Photo by bruce mars from Pexels)

How Hydrogen Cars Help with Climate Change

Imagine a zero emissions car that only takes a few minutes to fuel up. That’s what fueling hydrogen cars is like. What are hydrogen cars? They are electric cars, and they generate the electricity they need to drive by mixing hydrogen fuel with oxygen. This is how it works:

Why are no emission cars important to fight climate change? Transportation produces 14% of all greenhouse gas emissions. According to project drawdown, if electric vehicle ownership rises to 16% by 2050, over 10 gigatons of carbon dioxide could be avoided.

Can you picture beautiful white and pink cherry tree blossoms? Today’s story brings us to Japan and its automotive manufacturer Toyota. They pioneered hybrid cars with the Prius model. Now the company is betting on hydrogen cars. Toyota’s 2015 Mirai model was one of the first ones sold commercially. Now they are releasing a new version:

The latest Mirai has a revamped fuel cell stack that can store more hydrogen.

https://www.cnn.com/2019/10/11/business/toyota-mirai-hydrogen-fuel-cell-car/index.html

That will bring up the car’s range from 312 miles (405 km) to over 400 miles (650km). Fueling hydrogen cars works like fueling conventional cars and takes about 3-5 minutes. Hydrogen fuel stations are still rare but they are expanding. Greentech Media writes how countries all over the world move towards a green hydrogen future.

How green is hydrogen fuel? The big plus is that it can be generated locally, without pipelines and transportation emissions. It can be made from natural gas and coal, but more importantly it can be made from renewable energy, industrial waste and even sewage. As with electric cars, we need to make sure the electricity or hydrogen fuels are coming from renewable sources.

Finally, a question you probably have in mind: Is it safe? Fuel cell makers and car makers are designing safe fueling stations and cars that are as safe as gasoline.

What I like most about hydrogen fuel cell technology is that it’s another innovative technology for low emission energy. Rather than competing, we need to bring all innovations and technologies together to address climate change. Toyota’s new Mirai will launch late 2020 in Japan, North America and Europe. Let’s hope it takes off!