How Seaweed Tackles Climate Change

Just your nightly bedtime story? This week’s UN climate change report assesses the state of the oceans. It’s a dire forecast of melting ice sheets, sea level water rise, and acidification of the oceans. The acidification happens as the water takes in more and more human caused carbon dioxide. The report says that we have to reduce greenhouse gas emissions by 45% by 2030. Besides reducing emissions we need to work on restoring the oceans. Is there anything hopeful I can write about this week? Yes!

Imagine small scale farms for seaweed and shellfish such as oysters. These plants and animals have the superpower to clean the water, filter out pollutants, and capture carbon dioxide. By working their magic, they put underwater ecosystems back into balance. This week’s story is about a seaweed farm called Ocean Rainforest.

Picture a windy, cloudy and cold place. This story brings us far north to the Faroe Islands. They are situated in the middle of the North Atlantic Ocean, halfway between Norway and Iceland.

This is where the company Ocean Rainforest seeds, grows, harvests, and processes seaweed. They sell four types of seaweed on their website that can be used for food, cosmetics, and packaging. Seaweed farming is extremely sustainable because it doesn’t need fertilizer or water to grow, and doesn’t require deforestation.

By cultivating the seaweed instead of taking from wild stocks, we are sustaining the natural balance of our fjords.

http://www.oceanrainforest.com/

What I love most about Ocean Rainforest is how their farm takes in more carbon dioxide than they use.

As seaweed grows it takes in carbon dioxide and produces oxygen. Pieces of seaweed get washed out to sea and sink to the bottom of the ocean, where they permanently sequester carbon.

Coastal ecosystems sequester away surprisingly large amounts of carbon – they can sequester up to 20 times more carbon per acre than land forests

http://sitn.hms.harvard.edu/flash/2019/how-kelp-naturally-combats-global-climate-change/

Ocean Rainforest is one of the largest seaweed cultivators in Europe. Let’s hope their success inspires other seaweed farmers to start similar companies all around the world!

Sign up for weekly inspiration right in your inbox

Processing…
Success! You're on the list.

Can Kelp Forests Stop Global Warming?

Imagine diving through an underwater area with a lot of giant algae, a kelp forest. These underwater forests are very productive ecosystems and capture carbon the same way as forests on land. They take in carbon dioxide, produce oxygen, and create a healthy ecosystem for plants and animals. Unfortunately, these kelp forests are in danger. As the planet is getting warmer much of that heat is absorbed by warmer surface waters in the ocean. That warm water layer is getting bigger and nutrients from cold currents can’t reach the kelp forests any more. Kelp and marine animals are disappearing and ocean deserts are getting bigger. That sounds terrifying, is there a way to stop that trend? Actually, there is.

Growing back kelp forests may be one of the most extraordinary ways to reverse global warming

https://www.drawdown.org/solutions/coming-attractions/marine-permaculture

Today’s post is about Dr. Brian Von Herzen and his climate foundation. He came up with a way of restoring cold ocean currents to reestablish plankton, kelp, and fish. His invention is a wave powered tube that pumps cold water to an underwater structure to regrow plankton and kelp. This is how it works.

The left picture shows how cold currents naturally work. As wind blows warmer water to the side it gets replaced by cold, nutrient rich water. The nutrients help plankton, kelp, and seagrass to grow and marine animals to flourish. The picture in the middle shows how the warm water layer expands with raising temperatures. Cold, nutrient rich water can’t reach the kelp forest and ocean deserts expand.

The picture on the right shows Brian’s cold water pump. It pumps cold, nutrient rich water from deeper levels closer to the surface. The water flows into a structure where plankton and kelp can grow and bring back other marine plants and animals.

Restoring plankton and kelp sounds like a great idea. The numbers for carbon sequestration are actually massive and could make a real impact! Plankton are tiny but significant.

“They comprise half of the organic matter on earth and produce at least half of the earth oxygen”

http://www.climatefoundation.org/what-is-marine-permaculture.html

As with plankton, kelp sequesters huge amounts of carbon dioxide. On top of that, kelp can be harvested and utilized:

Floating kelp forests could provide food, feed, fertilizer, fiber, and biofuels to most of the world

Paul Hawken, Drawdon

I love this brilliant invention! Climate Foundation is currently testing the pump in Australia and the Philippines. Hopefully this can be adapted more widely soon so that we can restore ocean health, capture carbon emissions, and maybe one day reverse global warming!

Sign up for weekly inspiration right in your inbox

Processing…
Success! You're on the list.

Can Drones Capture Carbon Dioxide?

The British Startup BioCarbon Engineering develops drones to restore wetlands by planting mangroves. Wetlands sequester a huge amount of carbon dioxide in plants above ground and in the soil. In fact, they store five times more carbon dioxide than tropical forest.

The soil of mangrove forests alone may hold the equivalent of more than two years of global emissions—22 billion tons of carbon, much of which would escape if these ecosystems were lost.

https://www.drawdown.org/solutions/land-use/coastal-wetlands

Besides capturing carbon dioxide, mangroves provide protection from storm surges. Once restored, they clean the water and bring back marine animals.

Unfortunately, mangroves are being cleared at an alarming rate. More than half of the world’s mangrove forests have been lost in the last 50 years. That brings me back to BioCarbon Engineering’s drones and how they help to restore coastal wetlands. So, how does it work?

Drone crates a 3d map, drops seedlings, and monitors reforestation

First, a drone flies over the area to create a 3d map. This map is then used to decide where to plant. It drops biodegradable pods that are filled with a germinated seed and nutrients while recording each pod’s location. After planting the drone monitors the progress of the reforestation.

One of BioCarbon Engineering projects is in the Thor Heyerdahl Climate Park in Myanmar. Locals appreciate the restored mangrove forests because they are flood barriers and bring back crabs and fish. Long term success of the restoration can only be achieved with support from locals. Non-profits such as Worldview International Foundation work with local communities to train them to fly drones and monitor progress. Instead of making a living by selling the mangrove wood, locals are now making a living by restoring these wetlands.

And who pays for it? Non profits such as Sustainable Surf are launching projects for consumers and companies all over the world to finance the restoration of coastal ecosystems.

What I like most about BioCarbon Engineering is how the drones can scale up the reforestation of wetlands. We need all the help we can get to balance out our carbon dioxide emissions and this looks like a promising approach.

Sign up for weekly inspiration right in your inbox

Processing…
Success! You're on the list.

How Studying Temples Lead to Carbon Capture

I read this inspiring afforestation story in one of my favorite books, Drawdown. The story is about Akiri Miyawaki, a Japanese botanist who developed a novel afforestation method.

In the 1970s and 1980s he realized most forest trees where not native trees to Japan. They had been introduced over centuries for timber. He studied original vegetation around shrines and temples and his idea was to reintroduce those native species back to Japan’s forests. This is the method he developed:

5 steps to growing a native forest
The Miyawaki method: 5 steps to growing a native forest

“The Miyawaki method calls for dozens of native tree species and other indigenous flora to be planted close together, often on degraded land devoid of organic matter. As these saplings grow, natural selection plays out and a richly biodiverse, resilient forest results”

Drawdown: the most comprehensive plan ever proposed to roll back global warming, Hawken – Penguin Books – 2018

He became a champion of creating indigenous, authentic forests. They are more resilient to climate change and other threads. Over the years he has planted more than 40 million trees around the world, from Brazil to France, India and China.

What I like most about his approach is that it only takes 2 years of watering and weeding for the plants to become self-sustaining and they are mature after only 10-20 years. These original forests are denser, more biodiverse, and capture and sequester more carbon than plantations. What an inspiring story. Let’s plant more forests!

Can a Planter Help Capture Carbon?

Native Forests are not only some of the most biodiverse systems, they are also some of the biggest carbon sinks on the planet. Trees store carbon not only aboveground in biomass but also below ground in the soil. To mitigate global warming we have to stop deforestation. But what about the forest we have already lost, can we re-grow it?

You can try and replant cleared forests but protecting those young saplings from the elements and ants is vital. It’s a hugely labor-intensive process that is too costly to carry out.

http://www.bbc.com/future/story/20190301-this-biodegradable-planter-could-help-save-forests

Bruno and Pedro Rutman, two brothers from Brazil, think we can replant native forest. The BBC highlights their ingenious invention, Nucleário. It is a device to regrow forest without the need for human maintenance.

Biodegradable planter with rainwater capture and weed and insect barrier
Biodegradable planter to protect saplings and provide water for the first three years

It is made from biodegradable materials that decompose after three years. In the first three years of the seedling’s growth, Nucleário protects it from ants and weeds, and provides captured rainwater.

What I like most about the idea is that it’s a complete system for rainwater capture, sapling protection, and it’s made out of biodegradable material.

Right now prototypes are being tested all over Brazil, and Bruno and Pedro plan to have the product on the market in 6 months. I’m looking forward to updates as they go into production, let’s hope they are successful in regrowing native forests.

Sign up for weekly inspiration right in your inbox

Processing…
Success! You're on the list.