Can an API Make Rice Farming More Climate Friendly?

This story brings us to Vietnam where I presented at a webinar, organized by the IFC, the International Finance Corporation. Thankfully highly skilled translators were able to translate in realtime to and from Vietnamese to allow meaningful discussions across the globe. The topic was ”Digital Disruption in Agriculture Vietnam – GHG Emissions Measurement and Reporting Tools”. My talk covered a joint project from Seaspray Labs and Irri, the International Rice Research Institute.

In other posts I already talked about the climate impact of rice and how different farming practices can drastically cut emissions. To cut emissions, we need to measure existing emissions and then make ongoing assessments to monitor and reduce emissions. IRRI’s scientists have developed highly accurate rice emission calculators over many years. These were originally Excel based and Seaspray Labs partnered with Irri to develop web-based versions of the calculators. Now we are going one step further and developing an API. It will allow partner organizations to access IRRI’s calculator in their own apps and services. This is how it works:

This is how the API works for a fictional carbon credit app for rice farmers. The app gets rice farming information from its end user. These are the inputs the API needs to calculate emissions. The API then sends the results back to the app and the app can present these results meaningfully to its end user.

This is one example I showed in my talk. A second example showed a very different app for a very different user group. I mocked up a regional planning app. Vietnam wants to reduce methane emissions by 30% by 2030 and moving to low-carbon rice production will play a major role. My mockup shows how a planner can adjust the percentage of low farming practices and traditional farming practices to explore emission reductions of entire regions by 2030.

These are just two examples. The API is currently in development and I’m excited to see what other ideas IRRI’s partners will come up with. Hopefully these apps and services can translate into climate action for rice farmers, agriculture organizations, food companies, and consumers to reduce our carbon footprint.

How Can We Measure Climate Change Better?

Do you know how much money is in your bank account? How many calories does your white chocolate mocha have? How many steps did you walk today? We measure many aspects of our lives but when it comes to climate change our measurements are vague, and often nonexistent.

This week’s climate story brings us to the beautiful rice paddies of Vietnam. Seaspray Labs partnered with the International Rice Research Institute. IRRI’s climate change team is based in Vietnam and they are working on carbon accounting tools for rice. Rice farming releases a lot of greenhouse gas emissions. Traditional techniques such as flooding rice paddies release the potent greenhouse gas methane. The good news? Changing farming practices can drastically reduce emissions while still producing the same amount of rice.

We designed a web-based carbon calculator for rice growers, rice companies and scientists to better understand how different farming and processing methods for rice effect greenhouse gas emissions. We had three goals going into the project:

  • Easy access: Reach a bigger audience though a web-based tool
  • Intuitive experience: Provide a straightforward user experience
  • Understand data: Display data charts to measure, understand, and plan low emission practices

While most team members were in Vietnam, we also interviewed partners and end users in the Philippines, Thailand, India, Germany, and the US. This was followed by rapid prototypes to learn how users might use the calculator. Through different iterations and continuous feedback, the tool improved quickly. After the final development and testing phase the calculator got successfully deployed. You can read more about our process here. In early tests with the recently released calculator we see the following results:

  • Easy access: Instead of installing a tool and having to cater to different operating systems the web tool successfully allows ad hoc access in lectures and webinars.
  • Intuitive experience: Streamlined pages guide users through the complex task of entering data for growing, processing, and transporting rice. It works well for novice users but also supports efficient expert data entry.
  • Understand data: Visual results allow users to view and compare the carbon footprint of different rice products. By comparing different farming and processing methods users can explore how to best reduce greenhouse gas emissions.

We partnered with an amazing team of scientists and implemented the tool within weeks. Let’s hope it helps rice growers, rice companies and scientists to adopt low emission practices for rice. And let’s hope for more tools to measure the climate impact of the food we eat, the products we purchase, and the things we do.

How to Address Climate Change 40 Times Better

I’m constantly amazed by teams all over the world tackling climate change. This week’s climate story brings us all the way to Hawaii. Are you thinking about lush forests with waterfalls and beautiful sand beaches? Today we are looking at a different scenery:

North Kohala had suffered two centuries of logging that destroyed the native tropical sandalwood forest, and subsequent cattle grazing had denuded the land and degraded the soil.

https://www.forbes.com/sites/sofialottopersio/2021/06/09/former-reddit-ceos-new-startup-terraformation-raises-30-million-to-restore-forests-and-tackle-climate-change/?sh=219407566f1d

This is the area the startup Terraformation chose for their pilot project. The goal? Reforesting native forests all over the world to reverse climate change.

Their approach includes planning, training, equipment, and finding revenue opportunities with partner sites all over the world. Terraformation researched bottlenecks for forest restoration and developed a set of solutions:

On the left you see the off-grid seed laboratory. It can be used to dry, process and store seeds. In the center is a complete greenhouse with pots, trays and irrigation to grow seedlings. On the right side is a solar powered reverse osmosis system. It provides fresh water for young forest plants. And the best thing? They all fit in a shipping container and can be used off-grid, anywhere in the world. With these solutions Terraformation wants to assure long-term success:

Restoration means a lot more than putting trees in the ground. It’s about bringing back complex native ecosystems, starting with the right species and scaling up with the right tools.

https://www.terraformation.com/solutions/overview

What does all this have to do with climate change? We have to cut emissions in half by 2030 to limit global warming to 1.5 degree Celsius. A new report from America All In outlines a roadmap: Drastically cut emissions for electricity and transportation. Lower emissions for buildings and industries such as steel and concrete. We have to limit the amount of new greenhouse gases going in the atmosphere.

At the same time we have to capture existing greenhouse gases. Nature based solutions such as re-growing native forests are on the forefront of these capturing efforts. Why native forests? They store carbon in leaves, tree trunks, roots, and in the soil. A study published in Nature found natural forests are 40 times better than plantations at storing carbon.

Terraformation’s goal to reforest native forests is a great approach. We need to re-create these thriving ecosystems at a large scale to draw in significant amounts of carbon.

Terraformation’s founder has a proven expertise in running and scaling successful companies. Combined with access to a huge amount of funding, their company sounds extremely promising. I hope they will be able to help locals all over the world grow and maintain native forests. This is yet another startup I can’t wait to hear more success stories from!

How a Small Grain Can Make a Big Impact

This week’s climate story brings us to the green rice fields of Thailand. As in many other countries, rice is a staple food here. But did you know growing rice causes a significant amount of greenhouse gas emissions?

Traditionally, rice is grown on flooded fields called rice paddies. These paddies create ideal conditions for bacteria that emit methane. Why is methane bad? Methane has more than 80 times the warming power of carbon dioxide over the first 20 years after it reaches the atmosphere.

Today’s story shows how rice farmers in Thailand and all over the world tackle global warming. Reducing and interrupting the period of flooding reduces emissions. This method is called “alternate wetting and drying” and this is how it works:

Traditionally, rice fields are continuously flooded as you can see in the left picture. When irrigation is stopped, the water level slowly decreases, as shown in the center. On the right, the water level is about 15 cm below soil level, where the roots still get water. Once the water level gets lower, the fields gets flooded again and the process of alternate wetting and drying starts all over. This actually increases yields while farmers safe water and electricity to pump the water.

Let’s get back to Thailand. A project funded by the climate finance program NAMA Facility will outreach to 100,000 rice farming households to shift from conventional to low-emission farming. They are implementing best practices from the sustainable rice platform :

  • Alternate wetting and drying: Mid-season drainage alone reduces methane emissions by 35 to 70 percent.
  • Laser land leveling: Fields are leveled with the help of lasers to reduce water usage and increase grain yield and quality.
  • Site specific nutrient management: Farmers reduce the amount of fertilizer and apply it based on local conditions and only when needed.
  • Straw and stubble management: Instead of conventional burning, rice straw and stubble get removed from the field and used for other purposes or incorporated back into the soil.

In Thailand, rice farming has long traditions. The NAMA rice project works with the government and directly with rice farmers to change to new, sustainable farming methods. Here is a quote from Rampha Khamhaeng, a rice farmer from central Thailand:

To be honest, at first I didn’t buy it….Now I tried it and it works — it’s the best way

https://www.ft.com/content/8ff2b454-9390-11ea-899a-f62a20d54625

What I like most about this project is that it reduces emissions and the same time safes farmers money by using less water, fertilizer, and energy. This is another climate solution that is not only more sustainable, but also safes money. Let’s hope many more farmers all over the world are switching to sustainable rice growing practices soon!

A Surprise Hero Taking on Global Warming

This week’s climate story brings us to Central Africa. Imagine walking through a dense rainforest. Suddenly you hear a cracking noise and between the tree trunks you detect movement. And then, from the protection of the trees, a majestic forest elephant emerges.

One of the natural ways to capture greenhouse gases and avoid more global warming are trees. Trees capture and store carbon in their trunks, branches and leaves, but also in their vast network of roots. Not all trees are equal when it comes to carbon capture. Big, mature trees in primary forests are able to capture the most amount.

Central Africa has the second biggest rainforest in the world. How can we protect it? And how can we regrow forests we have lost? Turns out, we have a superhero who specializes on this job: The African forest elephant. This amazing animal thins out forests, optimizing light and water supply for trees to grow bigger and stronger.

This week’s climate story features an IMF article by Ralph Chami, Connel Fullenkamp, Thomas Cosimano and Fabio Berzaghi. They describe how elephant activities increase carbon storage, what benefits they bring, and what value African forest elephants have. This is how it works:

While foraging for food they thin out the forest, creating a healthy forest environment. One forest elephant can stimulate a net increase in carbon capture of 9,000 metric tons of carbon dioxide per square kilometer. That’s an equivalent of nearly 2000 passenger cars driven for a year.

What I like most about this article is that it connects environmental systems with a monetary value. The authors calculate the carbon value of a single forest elephant as $1.75 million.

Unfortunately, these elephants are fighting an existential threat, with poaching and deforestation pushing them to extinction.

So how does a monetary value help with protecting and increasing the forest elephant population? One example is a UN program that swaps debt for nature. Lenders agree to reduce a developing economy’s debt and in exchange the developing country protects specific natural resources. This sounds amazing! Let’s hope these programs gain traction soon and help protect and restore these vital ecosystems.