Can Drones Capture Carbon Dioxide?

The British Startup BioCarbon Engineering develops drones to restore wetlands by planting mangroves. Wetlands sequester a huge amount of carbon dioxide in plants above ground and in the soil. In fact, they store five times more carbon dioxide than tropical forest.

The soil of mangrove forests alone may hold the equivalent of more than two years of global emissions—22 billion tons of carbon, much of which would escape if these ecosystems were lost.

https://www.drawdown.org/solutions/land-use/coastal-wetlands

Besides capturing carbon dioxide, mangroves provide protection from storm surges. Once restored, they clean the water and bring back marine animals.

Unfortunately, mangroves are being cleared at an alarming rate. More than half of the world’s mangrove forests have been lost in the last 50 years. That brings me back to BioCarbon Engineering’s drones and how they help to restore coastal wetlands. So, how does it work?

Drone crates a 3d map, drops seedlings, and monitors reforestation

First, a drone flies over the area to create a 3d map. This map is then used to decide where to plant. It drops biodegradable pods that are filled with a germinated seed and nutrients while recording each pod’s location. After planting the drone monitors the progress of the reforestation.

One of BioCarbon Engineering projects is in the Thor Heyerdahl Climate Park in Myanmar. Locals appreciate the restored mangrove forests because they are flood barriers and bring back crabs and fish. Long term success of the restoration can only be achieved with support from locals. Non-profits such as Worldview International Foundation work with local communities to train them to fly drones and monitor progress. Instead of making a living by selling the mangrove wood, locals are now making a living by restoring these wetlands.

And who pays for it? Non profits such as Sustainable Surf are launching projects for consumers and companies all over the world to finance the restoration of coastal ecosystems.

What I like most about BioCarbon Engineering is how the drones can scale up the reforestation of wetlands. We need all the help we can get to balance out our carbon dioxide emissions and this looks like a promising approach.

Sign up for weekly inspiration right in your inbox

Processing…
Success! You're on the list.

Can we Replace Plastic with Seaweed?

Let’s talk plastic again. Plastic is everywhere. Most of it is made from fossil fuels. Project drawdown estimates that 5-6 percent of our global oil production goes into plastic manufacturing. After we use it, only 9% gets recycled! The rest ends up in landfills or in the environment where it emits greenhouse gases. Some of our plastic trash gets shipped to other countries which emits even more greenhouse gases.

So, what if we could replace plastic with a natural material? Something that takes carbon dioxide out of the atmosphere instead of producing it? Something that doesn’t need water or fertilizer to grow? And something that, while it’s growing, cleans our oceans? You guessed it, I’m talking about seaweed.

The British company Skipping Rocks Lab is working on just that: Replacing plastic with seaweed. This Forbes article covers how these seaweed pouches reduced plastic waste during the London marathon a few weeks ago. Organizers replaced 200.000 water bottles with seaweed pouches.

Skipping Rocks Lab calls these pouches Ooho. They use brown seaweed and remove it’s color, odor, and taste to produce a thin, edible membrane. To produce Ooho they are just using seaweed, calcium and water. The seaweed and calcium react to form a membrane. Here is how it works.

Seaweed pouches mad out of seaweed, calcium and water
Seaweed pouches made out of seaweed, water and calcium

Skipping Rocks Lab has been experimenting with these pouches for a few years now. They are making pouches for drinks and little sachets for sauces and dressings. So instead of a little plastic bag, your ketchup could come in a seaweed package.

Brown seaweed is a sustainable and renewable material. While plastic takes 700 years to decompose, seaweed turns into soil in just 6 weeks.

 “Growing up to 1m per day, it doesn’t compete with food crops, doesn’t need fresh water or fertiliser and actively contributes to de-acidifying our oceans.”

https://www.notpla.com/technology/

What I love most about this is that Skipping Rocks Lab are working on improving the properties and making the packaging better and better. With the marathon they showed they can produce on a scale. Now they are working on nets and plastic wraps made out of seaweed. Imagine how a plastic free future might look like!

Sign up for weekly inspiration right in your inbox

Processing…
Success! You're on the list.

Can I Drive to Work on Recycled Fuel?

How cool would it be if cars and airplanes could run on gas that has been made from carbon dioxide?

Part 1 of my story about Carbon Engineering covered how they capture carbon dioxide out of the air and turn it into calcium carbonate pellets. This is part two, it covers how they turn the carbon dioxide that they extract into fuel that could be used by cars or airplanes.

Turning air to fuel
Turning Air to Fuel

So, here is how it works. Carbon dioxide from the air is turned into calcium carbonate pellets. These are heated up to reach a much more concentrated form of carbon dioxide. This reacts with hydrogen and energy and is turned into hydro carbon fuels, such as gasoline, diesel or jet fuel.

This technology enables the production of synthetic transportation fuels using only atmospheric CO₂ and hydrogen split from water, and powered by clean electricity

https://carbonengineering.com/about-a2f/

Carbon Engineering designed a closed cycle of turning carbon dioxide from the atmosphere into concentrated carbon dioxide and then into fuel. By utilizing as little water as possible and renewable energy for the process, they are creating a green fuel.

This technology forms an important complement to electric vehicles in the quest to deliver carbon-neutral 21st century transportation.

https://carbonengineering.com/about-a2f/

The BBC has an interesting article about Carbon Engineering’s technology. It also covers concerns from environmentalists that carbon capture could be used as an excuse to prolong the fossil fuel era or prevent us from reducing emissions in the first place.

I think we need to work on reduction emissions as well as capturing carbon. I would love to rely on natural ways such as restoring forests and wetlands only, but it looks like that might not be enough. Carbon Engineering’s technology certainly looks promising.

What I like most about it is the idea of tuning the extracted carbon dioxide into a valuable product. If there is monetary incentive for carbon capture this technology might get adopted more broadly.

Sign up for weekly inspiration right in your inbox

Processing…
Success! You're on the list.

Can Artificial Shells Reduce Carbon Dioxide?

The Canadian company Carbon Engineering takes carbon dioxide out of the air and turns it to calcium carbonate – that’s what shells are made of! They developed a scalable process for capturing carbon dioxide from the air, a technology called Direct Air Capture (DAC).

Imagine an industrial plant with big fans to suck in air. This air is then mixed with chemicals and turned into calcium carbonate pellets.

Turning air into calcium pellets
Turning air into calcium pellets

What stage are they at? That’s the interesting part. Carbon Engineering have been capturing air from a pilot plant since 2015. Now in their commercial validation phase, they received major backing from industry to scale this technology.

Our proven Direct Air Capture (DAC) technology can scale up to capture one million tons of CO₂ per year with each commercial facility. That quantity of CO₂ is equivalent to the annual emissions of 250,000 average cars.

https://carbonengineering.com/about-dac/

What I like most about Carbon Engineering is that they have been capturing carbon dioxide from the atmosphere for several years now and are ready to scale. We need to use all the options we have reduce emissions and to remove carbon dioxide out of the atmosphere, and this definitely sounds like a good one.

While I personally like shells, they are turning it into something of more monetary value: Fuel. Stay tuned for part two of this post to read all about how Carbon Engineering creates clean fuels.

How Studying Temples Lead to Carbon Capture

I read this inspiring afforestation story in one of my favorite books, Drawdown. The story is about Akiri Miyawaki, a Japanese botanist who developed a novel afforestation method.

In the 1970s and 1980s he realized most forest trees where not native trees to Japan. They had been introduced over centuries for timber. He studied original vegetation around shrines and temples and his idea was to reintroduce those native species back to Japan’s forests. This is the method he developed:

5 steps to growing a native forest
The Miyawaki method: 5 steps to growing a native forest

“The Miyawaki method calls for dozens of native tree species and other indigenous flora to be planted close together, often on degraded land devoid of organic matter. As these saplings grow, natural selection plays out and a richly biodiverse, resilient forest results”

Drawdown: the most comprehensive plan ever proposed to roll back global warming, Hawken – Penguin Books – 2018

He became a champion of creating indigenous, authentic forests. They are more resilient to climate change and other threads. Over the years he has planted more than 40 million trees around the world, from Brazil to France, India and China.

What I like most about his approach is that it only takes 2 years of watering and weeding for the plants to become self-sustaining and they are mature after only 10-20 years. These original forests are denser, more biodiverse, and capture and sequester more carbon than plantations. What an inspiring story. Let’s plant more forests!