Healthy, Delicious, and Climate-Positive

A few weeks ago I went to Blue Tech Week. The talks about sustainable ocean and water technologies were amazing. Stay tuned for more updates in the coming weeks. But today I’ll write about the lunch I had there.

While I was grabbing food at the buffet, I noticed that every dish had seaweed as an ingredient. The rice, the chicken, the salad, even the dessert. And it was delicious!

While eating, I chatted with Wenhao, who was sitting next to me. I asked him how he was connected to the conference and he answered: “Through the food”.  I was intrigued so he told me more: He has a farm in Hawaii and the sea asparagus in the salad was from his farm.

You guessed it: This week’s story brings us to Hawaii. Imagine lush forests with amazing waterfalls, beautiful beaches and crystal-clear water. This is where Wenhao’s company Olakai grows sea asparagus or sea beans. It has a crunchy, salty flavor and is a superfood packed with vitamins, minerals and antioxidants. In our case the sea asparagus was fresh in the salad, but it can also be blanched or pickled.

Wenhao told me about how his sustainable farm uses saltwater from the sea to grow seaweed and sea asparagus as well as fish. This is how it works:

Aquaponics provides the fish with feed and oxygen while the carbon dioxide and nutrients (fish poop and leftover feed) naturally fertilize the the seaweed and sea vegetables. It creates the perfect environment for organic farming. And the best thing: No water, fertilizer or pesticides are needed.

What does sustainable farming have to do with climate change? According to project drawdown, crop and livestock production is the source of about 1/8 of greenhouse gas emissions. Sustainable farming practices reduce emissions from farming and ranching while also sequestering significant amounts of carbon.

What a fantastic way to grow sustainable food! Let’s hope sustainable aquaponic systems expand to other areas of the world. After that inspiring conversation I had to go back to the buffet and try some more…

What Do Solar Panels and TVs Have in Common?

Remember the scene in “Back to the Future” about TVs? Marty, traveling back in time from the 1980is to the 1950is, tells Stella they have two TVs at home. Stella answers: “Oh honey, he is teasing you. Nobody in the world has two television sets”.

This is how I felt after seeing a slide about solar adoption at the California Germany Bilateral Energy Conference. David Hochschild, chair of the California Energy Commission, gave an optimistic and inspiring keynote on clean energy in California.

He covered a range of clean energy highlights: Tesla’s Gigafactory developing the world’s largest factory for energy storage. Apple’s new solar roof, which is one of the biggest in the world and helps Apple being powered entirely by renewable energy. Another highlight is the Geysers, the world’s largest geothermal field with 22 geothermal power plants. It’s encouraging to hear about all these clean energy projects in California. What inspired me most from David’s talk was this slide:

Source: EIA Annual Energy Outlook 2004-2017, EIA Electric Power Monthly July 25, 2017

The plot shows a prediction for solar adoption from the US Energy Information Administration. The dotted line shows their estimation for US Solar photovoltaics generation and the solid line shows what actually happened.

What does solar adoption have to do with climate change? The power sector accounts for 40% of annual greenhouse gas emissions to the atmosphere. By using energy from renewable sources such as solar we can cut emissions drastically.

Isn’t that amazing? Prediction of solar adoption is incredibly low in comparison to what actually happened over the last decade. What I like most about this graph is that it gives me hope we might be underrating other climate solutions as well. As we are getting cheaper and more efficient clean energy options every month, what’s next?

How Hydrogen Cars Help with Climate Change

Imagine a zero emissions car that only takes a few minutes to fuel up. That’s what fueling hydrogen cars is like. What are hydrogen cars? They are electric cars, and they generate the electricity they need to drive by mixing hydrogen fuel with oxygen. This is how it works:

Why are no emission cars important to fight climate change? Transportation produces 14% of all greenhouse gas emissions. According to project drawdown, if electric vehicle ownership rises to 16% by 2050, over 10 gigatons of carbon dioxide could be avoided.

Can you picture beautiful white and pink cherry tree blossoms? Today’s story brings us to Japan and its automotive manufacturer Toyota. They pioneered hybrid cars with the Prius model. Now the company is betting on hydrogen cars. Toyota’s 2015 Mirai model was one of the first ones sold commercially. Now they are releasing a new version:

The latest Mirai has a revamped fuel cell stack that can store more hydrogen.

https://www.cnn.com/2019/10/11/business/toyota-mirai-hydrogen-fuel-cell-car/index.html

That will bring up the car’s range from 312 miles (405 km) to over 400 miles (650km). Fueling hydrogen cars works like fueling conventional cars and takes about 3-5 minutes. Hydrogen fuel stations are still rare but they are expanding. Greentech Media writes how countries all over the world move towards a green hydrogen future.

How green is hydrogen fuel? The big plus is that it can be generated locally, without pipelines and transportation emissions. It can be made from natural gas and coal, but more importantly it can be made from renewable energy, industrial waste and even sewage. As with electric cars, we need to make sure the electricity or hydrogen fuels are coming from renewable sources.

Finally, a question you probably have in mind: Is it safe? Fuel cell makers and car makers are designing safe fueling stations and cars that are as safe as gasoline.

What I like most about hydrogen fuel cell technology is that it’s another innovative technology for low emission energy. Rather than competing, we need to bring all innovations and technologies together to address climate change. Toyota’s new Mirai will launch late 2020 in Japan, North America and Europe. Let’s hope it takes off!

Can Renewable Energy Be More Reliable Than Conventional Power Grids?

Imagine you are sitting in the dark and while you are reading your battery is running low. As I’m writing this, millions of Californians are affected by a power outage. The overland power lines used to transport power are prone to storm damage and can spark wildfires. Stormy weather has been forecasted and utility companies shut off power as a preventive measure to avoid wildfires.

Why do we still use overland power lines? What happened to the energy transformation? What happened to the idea of flexible microgrids?

Microgrids are a set of different renewable energy sources such as wind or solar, combined with energy storage and load management tools. They generate, store and distribute energy. Microgrids can run independently from the traditional power grid and are much more flexible in emergency situations.

Transitioning our electricity from fossil fuels to renewables is an important way to address climate change. According to project drawdown 40 percent of annual greenhouse gas emission come from the power sector. Shifting to renewable power sources will have a big impact on lowering greenhouse gas emissions. So, where are we in the transition to renewable and flexible electricity and what’s this week’s good news?

This week’s story brings us to a warm and sunny place. Picture white sandy beaches and crystal clear water. This story is about the Abaco Islands in the northern Bahamas. Battered from recent hurricane Dorian, most of the power grid has been destroyed. In collaboration with the non-profit Rocky Mountain Institute, the challenge is turned into an opportunity. They plan to install solar powered microgrids to transition the islands to renewable energy sources.

High electricity costs in the Caribbean, volatile global oil prices, and a reliance on imported diesel create a clear business case for clean energy.

https://rmi.org/our-work/global-energy-transitions/islands-energy-program/

Another benefit is the flexibility of microgrids. They are able to bounce back quickly after natural disasters.

What I like most about the planned project is that the Bahamas are becoming a worldwide showcase for solar micro grids. What can California learn from the Bahamas? By replacing fossil fuels with renewables, they are reducing greenhouse gas emissions substantially. Let’s hope they inspire many other countries to follow!

How Seaweed Tackles Climate Change

Just your nightly bedtime story? This week’s UN climate change report assesses the state of the oceans. It’s a dire forecast of melting ice sheets, sea level water rise, and acidification of the oceans. The acidification happens as the water takes in more and more human caused carbon dioxide. The report says that we have to reduce greenhouse gas emissions by 45% by 2030. Besides reducing emissions we need to work on restoring the oceans. Is there anything hopeful I can write about this week? Yes!

Imagine small scale farms for seaweed and shellfish such as oysters. These plants and animals have the superpower to clean the water, filter out pollutants, and capture carbon dioxide. By working their magic, they put underwater ecosystems back into balance. This week’s story is about a seaweed farm called Ocean Rainforest.

Picture a windy, cloudy and cold place. This story brings us far north to the Faroe Islands. They are situated in the middle of the North Atlantic Ocean, halfway between Norway and Iceland.

This is where the company Ocean Rainforest seeds, grows, harvests, and processes seaweed. They sell four types of seaweed on their website that can be used for food, cosmetics, and packaging. Seaweed farming is extremely sustainable because it doesn’t need fertilizer or water to grow, and doesn’t require deforestation.

By cultivating the seaweed instead of taking from wild stocks, we are sustaining the natural balance of our fjords.

http://www.oceanrainforest.com/

What I love most about Ocean Rainforest is how their farm takes in more carbon dioxide than they use.

As seaweed grows it takes in carbon dioxide and produces oxygen. Pieces of seaweed get washed out to sea and sink to the bottom of the ocean, where they permanently sequester carbon.

Coastal ecosystems sequester away surprisingly large amounts of carbon – they can sequester up to 20 times more carbon per acre than land forests

http://sitn.hms.harvard.edu/flash/2019/how-kelp-naturally-combats-global-climate-change/

Ocean Rainforest is one of the largest seaweed cultivators in Europe. Let’s hope their success inspires other seaweed farmers to start similar companies all around the world!

Sign up for weekly inspiration right in your inbox

Processing…
Success! You're on the list.